Abstract

August 18, 2023

Let $\mathbb{D}=\{z \in \mathbb{C}:|z| \leq 1\}$ be the closed unit disk in \mathbb{C}. Let $\mathbb{C}[z]$ denote the set of polynomials $P(z)=a_{0} z^{n}+a_{1} z^{n-1}+a_{2} z^{n-3}+a_{n-1} z+a_{n}$, where $a_{k} \in \mathbb{C}, k \in\{0,1,2, \ldots, n\}$ and $n \in \mathbb{N}^{*}$.
We will study sufficient conditions regarding the roots of a polynomial $P \in$ $\mathbb{C}[z]$ which imply the following conjecture, attributed to the bulgarian mathematician Blagovest Sendov.
Conjecture 1. If all the roots of a polynomial $P \in \mathbb{C}[z]$ lie in \mathbb{D} and z^{*} is an arbitrary root of the polynomial P then the disk $\left\{z \in \mathbb{C}:\left|z-z^{*}\right| \leq 1\right\}$ contains at least one root of P^{\prime}.

We will give sufficient conditions which imply the Sendov's conjecture.

