Some uniqueness results for strongly singular problems Francesca Faraci

Department of Mathematics and Informatics, University of Catania, Italy ffaraci@dmi.unict.it

We consider a strongly singular problem of the form

$$\begin{cases} -\Delta u &= \frac{f(u)}{u^{\delta}} & \text{in } \Omega, \\ u &= 0 & \text{on } \partial \Omega \end{cases}$$

where Ω is a bounded smooth domain in \mathbb{R}^N , $\delta \geq 1$ and $f : [0, +\infty[\rightarrow]0, +\infty[$ is continuous with the property that the function $u \to \frac{f(u)}{u^{1+\delta}}$ is strictly decreasing in $]0, +\infty[$. With further restriction on either the behavior of f near the origin or on the range of δ , we prove that the problem admits at most one positive solution.

Based on [1].

References

[1] M. Chhetri, F. Faraci, K. Silva, Some uniqueness results for strongly singular problems, submitted.