# Limit theorems for runs containing two types of contaminations 

István Fazekas, Borbála Fazekas, Michael Suja<br>Department of Mathematics University of Debrecen<br>fazekas.istvan@inf.unideb.hu<br>borbala.fazekas@science.unideb.hu<br>michael.suja@science.unideb.hu

The problem of the length of the longest head run for $n$ Bernoulli random variables was studied in the classical paper by Erdős and Rényi [1]. In this paper, we define and study the limiting distribution of the first hitting time and the accompanying distribution for the length of the longest at most $1+1$ contaminated sequence of runs with trinary trials.

Let $X_{1}, X_{2}, \ldots, X_{N}$ be a sequence of independent random variables with three possible outcomes; $0,+1$ and -1 labelled as success, failure of type I and failure of type II, respectively with the distribution

$$
P\left(X_{i}=0\right)=p, \quad P\left(X_{i}=+1\right)=q_{1} \quad \text { and } \quad P\left(X_{i}=-1\right)=q_{2}
$$

where $p+q_{1}+q_{2}=1$ and $p>0, \quad q_{1}>0, \quad q_{2}>0$.
An $m$ length section of the above sequence is called a pure run if it contains only 0 values. It is called a one-type contaminated run if it contains precisely one non-zero element either a +1 or a -1 . On the other hand, it is called a two-type contaminated run if contains precisely one +1 , and one -1 while the rest of the elements are 0 's. A run is called at most $1+1$ contaminated if it is either pure, or one-type contaminated, or two-type contaminated. So for an arbitrary fixed $m$, let $A_{n}=A_{n, m}$ denote the occurrence of the event at the $n^{\text {th }}$ step, that is, there is an at most $1+1$ contaminated run in the sequence $X_{n}, X_{n+1}, \ldots X_{n+m-1}$ and $\overline{A_{n}}$.
Theorem 1 Let $\tau_{m}$ be the first hitting time of the at most $1+1$ contaminated run of heads having length $m$. Then, for $x>0$,

$$
\begin{equation*}
P\left(\tau_{m} \alpha P\left(A_{1}\right)>x\right) \sim e^{-x} \tag{1}
\end{equation*}
$$

as $m \rightarrow \infty$. Here $P\left(A_{1}\right)=p^{m}+m(1-p) p^{m-1}+m(m-1) p^{m-2} q_{1} q_{2}$ and $\alpha$ is defined by the parameters of the process.

Let $\mu(N)$ be the length of the longest at most two-type contaminated run in $X_{1}, X_{2}, \ldots, X_{N}$.
Theorem 2 For integer $k>0$,

$$
\begin{equation*}
P(\mu(N)-[m(N)]<k)=\exp \left(-p^{-\left(\log \left(C_{0} p^{-2} q_{1} q_{2}\right)+H(k-\{m(N)\})\right)}\right)\left(1+\mathrm{O}\left(\frac{1}{(\log N)^{3}}\right)\right) \tag{2}
\end{equation*}
$$

where $m(N), C_{0}$ and $H(x)$ are defined by the parameters of the process, $[m(N)]$ denotes the integer part of $m(N)$ and $\{m(N)\}$ denotes the fractional part of $m(N)$.
The proofs of the above theorems depends on the fulfilment of some conditions given in the main Lemma of Csáki et al. [2].

## References

[1] Erdős, P.; Rényi, A. On a new law of large numbers, J. Analyse Math. 23 (1970), 103-111.
[2] Csáki, E.; Földes, A.; Komlós, J. Limit theorems for Erdős-Rényi type problems. Studia Sci. Math. Hungar. 22 (1987), 321-332.

