The latest applications of certain minimax theorems

Biagio Ricceri

In this lecture, I will offer an overview of the latest applications of certain minimax theorems. Here are two samples.

THEOREM 1. - Let X be a topological space, E a real normed space, $S \subseteq E^*$ a convex set weakly-star dense in E^* , $I: X \to \mathbf{R}$, $\psi: X \to E$. Assume the $\psi(X)$ is not convex and that, for every $\eta \in S$, the function $I + \eta \circ \psi$ is lower semicontinuous and inf-compact in X.

Then, there exists $\tilde{\eta} \in S$ such that the function $I + \tilde{\eta} \circ \psi$ has at least two global minima in X.

THEOREM 2. - Let E be a reflexive real Banach space and let $C \subset E$ be a closed convex set, with non-empty interior, whose boundary is sequentially weakly closed and non-convex.

Then, for every function $\varphi : \partial C \to \mathbf{R}$ and for every convex set $S \subseteq E^*$ dense in E^* , there exists $\tilde{\gamma} \in S$ having the following property: for every strictly convex lower semicontinuous function $J : C \to \mathbf{R}$, Gâteaux differentiable in $\operatorname{int}(C)$, such that $J_{|\partial C} - \varphi$ is constant in ∂C and $\lim_{\|x\| \to +\infty} \frac{J(x)}{\|x\|} = +\infty$ if C is unbounded, $\tilde{\gamma}$ is an algebraically interior point of $J'(\operatorname{int}(C))$ (with respect to E^*).