
8th Int. Conf. on Mathematics and Informatics, September 9-10, 2021, Târgu Mureş, Romania

An Approach for Formalizing the Memory Consumption of
C++ Standard Template Library Containers

Attila Gyen, Norbert Pataki

Department of Programming Languages and Compilers, Eötvös Loránd University

gyenattila@gmail.com, patakino@elte.hu

The Standard Template Library [1] (STL) which initially developed by Hewlett-Packard Com-
pany in 1994 became the library for the standard C++ language. In the following years, this was
significantly expanded and enriched with many new elements in the C++11 / C++14 standards.
The template library supports generic programming with containers, iterators (generalized point-
ers), and algorithms [2]. The template solution allows us to use the classes and functions with a
given name for (almost) any type, according to the needs of the program. Containers have different
characteristics in many ways:

• time required to insert or delete a new item

• access time to stored items

• regarding the memory usage, containers can be divided into two main groups: memory-
contiguous and node-based

In STL, there is an asymptotic run-time guarantee for most library algorithm operations that are
performed on containers, but there is less conversation about how container’s memory is allocated or
re-allocated on the heap. After all, a vector and a linked list have a different memory representation,
such as a double-ended queue or a map. With n number of elements, we can be sure that these
data structures will need different amounts of memory allocation even if they are of the same type
of elements.

It is almost impossible to make an exact prediction because the size of each type is not known
in advance, especially the user-defined types. However, it is possible to determine memory require-
ments in advance, such as that the size of an x container containing integers of n elements is
sure to always be less than or equal to that of a y container, where x and y are different types of
containers. In order to provide an even more generic solution, we disregard the platform-dependent
memory allocation of C++ primitive types.

The purpose of this paper is to provide a detailed explanation of these guarantees. We present
an approach how to formalize the heap memory requirements for certain containers.

References

[1] Norbert Pataki, C++ Standard Template Library by template specialized containers Acta
Univ. Sapientiae, Inform. 3,2 (2011) 141–157

[2] Matthew H. Austern, Generic programming and the STL: using and extending the C++ Stan-
dard Template Library, 1998


