Partial differential inclusions involving Φ-Laplace operators

Nicușor Costea

"Simion Stoilow" Institute of Mathematics of the Romanian Academy
and
Department of Mathematics and Computer Science, Politehnica University of Bucharest

We study the weak solvability of PDI's of the type

$$-\text{div}(a(|\nabla u|)\nabla u) \in \partial_C f(x, u(x)), \text{ in } \Omega,$$

subject to Dirichlet boundary condition in a domain $\Omega \subset \mathbb{R}^N$ with Lipschitz boundary $\partial\Omega$. Here, $a : (0, \infty) \to (0, \infty)$ is such that

$$\Phi(t) = \int_0^t a(s)s \, ds,$$

defines an N-function and the corresponding Orlicz-Sobolev space $W_{0}^{1}L^{\Phi}(\Omega)$ is reflexive. The function $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is locally Lipschitz w.r.t. the second variable and ∂_C denotes the Clarke subdifferential of $t \mapsto f(x, t)$.

Using a minimization technique and the Mountain Pass Theorem for locally Lipschitz functionals the existence of at least one weak solution is established. A multiplicity alternative is also proved via nonsmooth Schechter theory. More precisely, we show that either the problem possesses at least two nontrivial weak solutions or a rich family of negative eigenvalues.

This is a joint work with Csaba Varga (Babes-Bolyai University, Cluj-Napoca) and Gheorghe Moroșanu (Central European University, Budapest).

This presentation has been partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2016-0035 "Typical and Nontypical Eigenvalue Problems for Some Classes of Differential Operators".