Consider the equation \(\text{div} \left(\frac{\phi(|\nabla u|)}{|\nabla u|} \nabla u \right) = 0 \) on the punctured unit ball from \(\mathbb{R}^N \) \((N \geq 2) \), where \(\phi \) is an odd, increasing homeomorphism from \(\mathbb{R} \) onto \(\mathbb{R} \) of class \(C^1 \). Under reasonable assumptions on \(\phi \) we prove that if \(u \) is a non-negative solution of our equation, then either 0 is a removable singularity of \(u \) or \(u \) behaves near 0 as the fundamental solution of the equation investigated here. In particular, our result complements to the case on nonhomogeneous operators in divergence form Bôcher’s Theorem (\textit{Bull. Amer. Math. Soc.}, 1903) and some classical results by Serrin (\textit{Acta Math.}, 1964-1965). This presentation is partially supported by CNCS-UEFISCDI Grant No. PN-II-RU-TE- 2014-4-0007.