An overview of the applications of certain minimax theorems

Biagio Ricceri

Department of Mathematics and Computer Sciences, University of Catania, Catania, Italy
ricceri@dmi.unict.it

In this lecture, I will highlight the great flexibility of certain minimax theorems which allows one to get a series of consequences in different fields. Here are two samples:

Theorem 1 Every non-empty uniquely remotal compact subset of any normed space is a singleton.

Theorem 2 Let \(a \geq 0, b > 0 \), let \(\Omega \subset \mathbb{R}^n \) be a smooth bounded domain, with \(n \geq 4 \), and let \(p \in \left[0, \frac{n+2}{n-2} \right] \). Then, for each \(\lambda > 0 \) large enough and for each convex set \(C \subseteq L^2(\Omega) \) whose closure in \(L^2(\Omega) \) contains \(H^1_0(\Omega) \), there exists \(v^* \in C \) such that the problem

\[
\begin{cases}
- \left(a + b \int_{\Omega} |\nabla u(x)|^2 dx \right) \Delta u = |u|^{p-1}u + \lambda (u - v^*(x)), & \text{in } \Omega \\
\quad u = 0, & \text{on } \partial \Omega
\end{cases}
\]

has at least three solutions, two of which are global minima in \(H^1_0(\Omega) \) of the functional

\[
u \to \frac{a}{2} \int_{\Omega} |\nabla u(x)|^2 dx + \frac{b}{4} \left(\int_{\Omega} |\nabla u(x)|^2 dx \right)^2 - \frac{1}{p+1} \int_{\Omega} |u(x)|^{p+1} dx - \frac{\lambda}{2} \int_{\Omega} |u(x) - v^*(x)|^2 dx.
\]

A very challenging problem is as follows: does Theorem 2 hold for \(n > 4 \) and \(p = \frac{n+2}{n-2} \)?